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Theoretical Model to Calculate Steady-State
and Transient Ampacity and Temperature

in Buried Cables
Carlos Garrido, Antonio F. Otero, and José Cidrás

Abstract—The temperature distribution and ampacity in
a multilayered soil surrounding a system of three cables are
calculated in the steady state and in emergency situations. In
this paper, we present the mathematical model, which solves
the heat diffusion equation in cylindrical coordinates inside the
cables and in Cartesian coordinates in the surrounding soil. The
finite difference method is used to solve the equations. In order to
reduce the number of points studied that are of no interest to the
results, a variable step discretization is used. Here, we present the
development of the model and the effect of some of the parameters
which influence the convergence and accuracy of the method. The
application of the model in different configurations and situations
is given in the second part of this work, sent for publication at the
same time. The model is applicable to the study of buried cables
in both the steady state and transient states for short-circuit and
overload situations.

Index Terms—Ampacity, thermal analysis, transient tempera-
ture, FDM, temperature rise.

I. INTRODUCTION

I N densely populated areas, electricity is usually transported
and distributed through buried cables, due to the advantages

that these offer compared to overhead cables. The main disad-
vantage of buried installations is knowing, with sufficient accu-
racy, the maximum values for ampacity that can flow through
them in steady and transient states without insulation deterio-
ration. This lack of knowledge is due to the temperature gen-
erated by the electrical current passing through the installation
not being known accurately enough. The use of various material
in the composition of the cables and the backfill in contact with
them under certain conditions of use, can give rise to tempera-
ture increases above levels that the cable insulation can with-
stand without deterioration. As a consequence, under normal
use, these installations are used below their real load possibili-
ties. However, given the high cost of such installations, it would
be useful to make optimum use of them so that the maximum
possible current can circulate without exceeding the tempera-
ture limit for insulation deterioration. For this, it is necessary to
know the temperature distribution around buried cables, the in-
fluence on this of the different elements making up the system,
and the situations that can arise during use as accurately as pos-
sible.
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Analytical methods in conjunction with empirical approxi-
mations were initially used for the buried cable heat calcula-
tions [1]–[4]. Later, some writers took on the problem using
a representation of the cable system by the thermal equivalent
of a lump or distributed parameter electrical network [5], FFT
techniques [6], Newton-Raphson techniques [7], etc. However,
these are not the most suitable methods for a thorough tempera-
ture study. The invariability of the parameters with temperature,
the excessive simplification of the geometry of the problem,
and the materials and the starting conditions are some of the
main minus points. Therefore, in order to predict the temper-
ature distribution in buried cables as reliably as possible, one
must resort to numerical calculation. Numerical methods can
conveniently deal with the varying properties of the materials
involved, the complexity of the real system, and the variability
of the parameters with temperature. Different models have been
presented that use finite difference methods [8]–[13], finite ele-
ments [14]–[19], or contour elements [21]. These methods rep-
resent the buried cable system by means of a discrete set of
points and solve the heat diffusion equation using one of the
discrete techniques mentioned. However, the models referred
to do not show broad development which allows rapid applica-
tion and, in many cases, are only applicable to the steady state.
Similarly, none of them contemplates the variability of the pa-
rameters with temperature. In view of this, we have deemed it
convenient to develop a model that can be applied to steady and
transient states and takes into account the dependence of the pa-
rameters on temperature, always bearing in mind that the model
must be able to respond to the basic questions arising from de-
signers and users of these installations, such as: what is the time
duration permitted for a specified overload given certain oper-
ating conditions? What temperatures will there be after a spec-
ified overload given certain operating conditions? What is the
maximum ampacity for the cables for a given period of time
and specified system temperatures? etc. The aim of this work
is to develop a more exact method for obtaining the steady and
transient heat fields in buried cable insulations, one which al-
lows graphs or charts to be drawn up for different configurations
and situations for easy application by electrical engineers. The
model presented here is based on the finite difference method
(FDM). Due to the length of the insulations, the model is inde-
pendent of this variable, which means that only a two-dimen-
sional (2-D) study of the problem is needed. One of the incon-
veniences that may arise is the need to consider a large area of
study around the cables so as to guarantee that the furthermost
points in the soil see no temperature modification (constant tem-
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perature isotherms at points far enough from the cables). This
normally leads to a compromise between choosing a number of
study points which is not so great and choosing an isotherm in a
position which does not correspond to it. To avoid this problem,
Hannaet al. [8] introduced a restriction based on the law of
energy conservation, by which they establish that heat losses
through the limit area must be equal to the heat dissipated from
the cables. This restriction permits a reduction in the size of the
area under study but introduces new disadvantages. In our case,
we have considered that in order to better tackle the problem, it
is necessary to consider the whole area that is affected by heat in-
creases. This means that to reduce the number of points, we have
introduced a variable step discretization; thus, we can focus our
attention (a greater number of study points) on the interior of the
cables and the areas near these, while the areas further away (a
lower temperature variation) is represented by a smaller number
of discrete points. At the same time, the model includes the vari-
ability with temperature of the parameter involved (resistivity of
the conductor and thermal conductivity and specific heat of the
different materials in the cables and the soil). It is possible to
simulate the moisture migration using a variable soil thermal
conductivity as a function of the temperature. Also included are
the heat losses to the environment through convection and gains
through radiation. The model also considers dielectric losses,
which may be great for medium or high voltages. The model
is applied to temperature calculations in buried insulations and
makes it possible to simulate calculations for direct current and
alternating current by using different current values, etc.

Here, we present the model’s mathematical development and
the results concerning the model itself. In an accompanying
work, the results obtained using our model for different usage
conditions and different system configurations are shown.

II. DESCRIPTION OF THEMODEL

One of the most used configurations for buried power cables
consists of three individual cables placed at the same level and
with a typical separation between them of one diameter (Fig. 1).
These cables are usually buried directly in the earth or in a back-
fill material such as concrete or sand. Alternatively, they are
placed in pipes. In order to obtain the heat distribution around
the buried cables, it is necessary to solve the heat diffusion equa-
tion

(1)

where and are, respectively, the density, the specific
heat, and the thermal conductivity of the material being studied.

represents the energy generation per time unit and volume
unit. Both and usually vary with temperature. Likewise,
heat generation, , varies from point to point and is a function
of the temperature. Given that the length of the installation is
much greater than the lateral dimensions, the above equation is
considered independent of the length coordinate, so the equation
is solved in a plane that is perpendicular to the length. Bearing
in mind the geometry that is shown in Fig. 1, and with the aim
of obtaining greater accuracy in the results, we use (1) in cylin-
drical coordinates inside the cables (made up of conductor, insu-
lator, jackets, shield, sheath, etc.) and in Cartesian coordinates

Fig. 1. Geometric model (cross–section) of a typical buried cable installation.

in the surrounding material. Putting the divergence and gradient
operators through (1), and taking into account the variation with
temperature of thermal conductivity, we obtain for cylindrical
coordinates

(2)

and for Cartesian coordinates

(3)

Equations (2) and (3) are subject to the following boundary con-
ditions:

a) In the soil which is far enough away from the cables, both
to the sides and underneath, the temperature is not af-
fected by the cables’ presence, which means that in these
areas, a temperature isotherm is considered to be
equal to the ambient soil temperature

(4)

b) At the separation surface between soil and air, convection
losses are considered, which means that temperatures at
this surface are obtained by taking into account Newton’s
law

(5)

where is the thermal conductivity of soil (or material in
the surface), is the convective heat transfer coefficient
(W/m C), is the temperature at the surface, and
is the air temperature.
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c) In the separation between the different materials of
the cable, between the surface of the cables and the
surrounding medium, and between the different mate-
rials surrounding the cables, calorific flow continuity is
fulfilled at the separation surface:

(6)

where is the normal to the separation surface, and
and represent the thermal conductivities of medium 1
and medium 2, respectively. Likewise, the temperature in
both materials at the border points must be the same.

In (2) and (3), represents the heat generated per time unit
and volume unit. The production of heat in the cable is due to
current circulating through the conductors, jackets, and shields.
At the same time, it is also necessary to consider the heat pro-
duced by dielectric losses, which can be great in medium and
high voltages. To determine these losses, the formulae given in
[22] are used. At the surface of the soil, the generation or loss
of heat through radiation and the solar radiation must be consid-
ered. Heat generation from current circulation is given by

(7)

where is the resistance of the section being considered,is
the current passing through that section, and is the volume.
Taking into account the relationship between and the resis-
tivity of the conductor and the system of coordinates being used,
we obtain, for each conductor

(8)

where is the conductor’s electrical resistivity, is the total
current passing through it, andis its section. Electrical resis-
tivity is assumed to be variable with temperature, and the effects
on this of skin and proximity effects [22] have been taken into
account. Both direct and alternating currents can be used in the
model, and different current values for each conductor can also
be used.

Given that (2) and (3) are nonlinear, their resolution cannot
be undertaken using simple analytical techniques, which means
we have approximated the partial derivatives using finite differ-
ences (FDM) [23]. The method consists of making a partition
(Fig. 2) using a mesh of discrete points where the tem-
perature at each point is calculated to solve the equations that
result from the approximations for (2) and (3) by finite differ-
ences, taking into account the applicable boundary conditions
for each case. In this method, the speed of solution increases
as the number of points studied decreases. However, the more
points considered, the greater the accuracy. It is clear that at the
points sited within the cables and their immediate surroundings,
there is a greater heat gradient, which means that in these areas
it is necessary to calculate the temperature at the highest pos-
sible number of points so as to obtain the most reliable results.
Inversely, the areas further away from the cables have a smaller
thermal gradient, which means the accuracy of the method is not
compromised if the number of points chosen there is smaller. On
the other hand, taking into account that the current limit (am-
pacity) is a consequence of the maximum temperature that the

Fig. 2. Discretization employed.

Fig. 3. Discretization inside the cables.

cable insulators can withstand without deteriorating, it is clear
that a greater number of discrete points are needed from inside
and nearby the cable for greater accuracy when calculating this
limit. As a consequence of this, and with the aim of improving
the speed without losing accuracy, we have approximated the
partial derivatives through variable step finite differences [23]
increasing the discretization step as we move away from the
areas near the cables (see Fig. 2).

Applying variable step discretization to (2) and (3), we get
cylindrical coordinates (see Fig. 3)

(9)
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where and represent, respectively, the discrete variables at
coordinates and .

Cartesian coordinates (see Fig. 2)

(10)

where and represent, respectively, the discrete variables at co-
ordinates and . represents the temperature at the previous
instant in time and is the time increment being considered.
Due to the nonlinearity of the equations, the nonlinear terms are
evaluated with the temperature values obtained in the previous
time iteration.

Grouping terms in (9) and (10), the equation system

, is obtained, whose
independent coefficients and term are given by the following.
For polar coordinates

(11)

and for Cartesian coordinates

Fig. 4. Connection points between both systems.

(12)

Should only the equation system for the steady state be
needed, the terms containing in the and
coefficients can be eliminated from the previous equations.

In the previous equation system, the coefficients are a func-
tion of temperature, which depends on position and time. So in
order to solve the equation system, we have used the over-re-
laxed iterative method (modified Gauss-Seidel) solved in an it-
erative way for each discrete time step, thus obtaining the
heat distribution over time. The connection between the equa-
tion system in cylindrical coordinates and the equation system
in Cartesian coordinates is obtained through the four discrete
points in common between the outer surface of the cable and the
surrounding soil (discrete points , and in Fig. 4). How-
ever, for the temperature calculation in the surface separation
between cable and soil at the points that are not in common be-
tween both coordinate systems (points in Fig. 4),
a temperature is used that is obtained by interpolation between
the nearest points in the soil in the radial direction (pointsand

in the soil for point ). The interpolation chosen is due to its
being more versatile when varying the values of and/or
and this variation does not affect the results obtained with the
model.

The discrete points where the boundary conditions given in
(5) and (6) are fulfilled modify the equation system coefficients
in accordance with what follows.

a) border points between different media
a.1) Separation surfaces between the different layers that

make up the cable (conductor, insulation, shield,
armor, jacket, sheath, etc.) and the soil or surrounding
material. Bearing in mind that the following is fulfilled
at the boundary points: ,
with doing a Taylor development around point
sited on the boundary between both media:
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and clearing
the second derivatives and substituting in the polar
equation for both media (1 and 2) the following is
obtained for the coefficients:

where

and (13)

a.2) Separation surfaces between the different mate-
rials surrounding the cables (backfill material,
top layer, and soil). As in the previous case, the
boundary points fulfill
or where or , re-
spectively, are the normal to the separation surface,
with a Taylor development around pointsited on the
boundary between both media for the case where the
surface separation is perpendicular to variable

and clearing the second derivatives and substituting in
the Cartesian equation for both media (1 and 2) the
following is obtained for the coefficients:

(14)

and similarly for the case where the separation surface
is perpendicular to variable.

a.3) Corner points between two materials in Cartesian
coordinates
In the same way as the previous cases, the boundary
points fulfill and

where and ,
respectively, are the normal to the separation
surface. With a Taylor development around
point sited on the boundary between both
media for the case in which the separation sur-
face is perpendicular to variable

, clearing
the second derivatives and substituting in the Cartesian
equation for both media (1 and 2), the following is
obtained for the coefficients (Fig. 5):
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Fig. 5. Corner points between two materials and points between three
materials.

(15)

and similarly for the case where the separation surface
is perpendicular to variable.

a.4) Points between three materials in Cartesian coordi-
nates. In the same way as the previous cases, the border
points, calorific flow continuity is fulfilled at the sepa-
ration surfaces. In a similar way, we obtain (Fig. 5)

(16)

b) Separation surface between the ground surface and the
air. With a Taylor development on the border point ,
the separation surface being perpendicular to the coor-
dinate , if the second order derivative as a function of
the first order derivative is obtained and taking into ac-
count the convection equation

, the following is obtained for
the different coefficients:

(17)

where , and are, respectively, the density, the
specific heat, and the thermal conductivity of soil.

III. M ODEL VALIDATION

In order to contrast the model, a known heat distribution, one
corresponding to a determined heat generation, is introduced
into it and the model’s results are compared with those for the
known distribution. In no case was the temperature calculation
error greater than 0.2%. Likewise, for the transient model, if
losses through the cable insulation are not taken into account,
all of the heat generated goes into increasing the conductors’
temperature, this increase can also be obtained through the adi-
abatic thermal equation [24]:

(18)

where is the initial temperature, the current, is a pa-
rameter that for copper is 226 A.s/mm , is the conductor
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Fig. 6. Acceleration factor effect on the number of iterations.

section, and is the inverse of the variation coefficient of the
resistance.

In order to check its fitness, the temperatures were calculated
assuming cable insulation with zero thermal conductivity so as
to be able to compare it with (18). The study was carried out
for cables with several cross–sections and with differing initial
conditions for each case. The values obtained by our model co-
incide fully with the values obtained with the adiabatic equation.

IV. RESULTS

Given that the Gauss-Seidel method is used to resolve the
nonlinear equation system, it is interesting to estimate the ac-
celeration factor in order to reduce as much as possible the
number of iterations needed to reach convergence. Fig. 6 shows
the number of iterations needed (as a percentage) to reach con-
vergence according to the acceleration factor. The number of
iterations needed with represents 100%. It can be seen
that the number of iterations needed is significantly reduced up
to a value of 16% for . For values of over 1.78, the
system becomes unstable. However, the total number of itera-
tions is still quite high, although this number depends on the
starting point (initial conditions) chosen for solving the system.
In the steady state, unlike the model presented by Hannaet al.
[8], the choice of initial temperature is not a critical parameter
in the number of iterations to be carried out, as the model sup-
ports the introduction of a known heat distribution as an initial
starting point. The more this distribution approaches that cor-
responding to the current being used, the lower the number of
iterations needed to reach convergence is. However, we have
also tested our model (in the steady state) assuming the same
initial temperature at all of the discrete points. Clearly this sit-
uation is far removed from the final one, which means that the
number of iterations needed to reach convergence is great. The
number of iterations needed to reach convergence as a function
of the initial temperature specified when beginning the calcula-
tion can be seen in Fig. 7. It can be observed that the initial tem-
perature that needs to be specified in order to obtain the least
number of iterations increases with the current passing through

Fig. 7. Number of iterations as a function of initial temperature for the three
currents.

the cables. This is clear, because at greater currents, the tempera-
ture is higher also, which means that the starting temperature for
reaching convergence in fewer iterations must also increase. For
each current (that is, for each heat distribution), the number of it-
erations decreases with the increase in initial temperature until a
minimum is reached, from which point the number of iterations
needed to reach convergence increases again. Clearly, this result
has to do with the final temperature attained, as a uniform initial
temperature at all of the discrete points which represents the av-
erage value of the final temperature will give rise to the lowest
number of iterations. However, in our model, in order to reduce
the number of iterations as much as possible, the heat distribu-
tion corresponding to a current, near that for which temperature
is being calculated, can be introduced as an initial temperature
(initial condition). It should also be pointed out that the coeffi-
cients and terms that are independent of the equation system are
modified in each iteration because they are themselves a func-
tion of the temperature. This can give rise to an increase in the
number of iterations needed to reach convergence. In the case
of steady–state calculations, the effect was studied of the in-
dependent coefficients and terms on the number of calculation
iterations. In one case, they were calculated in each iteration,
while in another they were calculated for the initial tempera-
ture values, the system was resolved, they were recalculated at
the new temperatures, the system was again resolved, and they
were recalculated again at the new temperatures, etc. until con-
vergence was reached. After developing several examples for
the different cases, we can conclude that the fastest resolution
method is the one where the independent terms and coefficients
are calculated in each iteration.

Once the convergence criterion has been chosen (tempera-
ture difference between two successive iterations), it is es-
pecially important to reduce the number of iterations and reach
adequate accuracy. Thus, Fig. 8 shows the relationship between
the convergence criterion and the absolute error in the final
temperature for a system made up of three low–voltage con-
ductors buried directly into the ground at a depth of 1000 mm
and where the heat distribution corresponding to the steady state
was studied for currents of 500, 800, and 1000 A. Thus, for

C, the least possible error was achieved. How-
ever, the method continues for an infinite number of iterations
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Fig. 8. Difference (in percent) between the final temperature and the real
temperature according to the�T convergence criterion.

Fig. 9. Number of iterations needed to reach convergence according to the
convergence criterion.

due to the calculation itself always being greater than the con-
vergence criterion, with the temperature varying (after a suffi-
cient number of iterations) between two values that only differ
in the fifth decimal place. This value was taken as the true final
temperature value. The error in the temperature estimation de-
pends on the current passing through the cables and is greater
when the current is lower. For values of C, the
system converges, and different final temperatures are obtained
according to the value used. Thus, for C, the
same final temperature is obtained as for the ideal case, whereas,
at the other extreme, for C, temperature estima-
tion errors of more than 50% are obtained. As can be deduced
from the figure, in order to obtain calculation errors of less than
1%, it is necessary to use values of below C.
Fig. 9 shows the number of iterations needed to reach conver-
gence for the three currents of 500, 800, and 1000 A from the

Fig. 10. Temperature distribution in the three cables.

previous case. From the figure, one can deduce that the greater
the current (and, therefore, the temperature in the cables) and
the smaller , the higher the number of iterations needed to
reach convergence. On the other hand, according to the previous
Fig. 8, there is a practically negligible reduction in the number
of iterations for values of with which small errors in tem-
perature calculation are obtained (curve section between
and C).

The use of variable step discretization allows us to study the
temperature inside cables and their immediate surroundings in
full detail. For this, discretization intervals of less than 1 mm are
used in the cables and the area next to them, whereas the dis-
cretization interval in distant areas is, in some cases, more than
1 m. It must be remembered that the greatest heat gradient takes
place in the cables which means that calculating their tempera-
ture accurately needs a model that uses very small increments.
In the areas further away, as the thermal gradient is very small,
the use of large increments does not affect the thermal calcula-
tion. Partition of the soil is formed by a mesh of 3321 discrete
points while inside each cable the partition contains a total of 33
discrete points.

In Fig. 10, the temperature in three cables (500-mmcon-
ductor section) buried directly in soil is shown when a current of
810 A circulates through them. The thermal conductivity of the
soil is 0.915 W/m C, the convection coefficient is 7.38 W/m
C and the ambient temperature is 20C (in air and soil). It can be
seen in the figure that the conductor of the central cable presents
a temperature 5C above that of the other two. In the insulator,
the temperature is the same as that of the respective conductor,
while the temperature in the sheath changes with position and
distance. Thus, in the two outer cables, the temperature at the
sheath surface varies from 85.8C at the point nearest the cen-
tral cable to 73.7 C at a point on the outer cable sheath nearly
opposite the hottest point. The heat increase from the center of
the cable to the surface of the sheath is approximately 10C.

In Figs. 11 and 12, the temperature as a function of the dis-
tance to the center of the middle cable for different depths is
shown. The parameters used are the same as those for the pre-
vious figure. Thus, Fig. 11 shows the temperature in the cen-
tral cable and in the adjacent one in detail and how this reduces
quickly once the soil is reached. As we approach the ground sur-
face, the profiles are less marked, with the temperature at this
surface (in the area located above the three cables) being 4.6C
above the environment temperature. Fig. 13 shows temperature
as a function of depth (from the ground surface to the distance
at which the soil isotherm is found below the cables). The pa-
rameters used are the same as those for the previous figures. The
profiles shown correspond to different locations measured from
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Fig. 11. Horizontal thermal profiles in the soil.

Fig. 12. Horizontal thermal profiles in the soil.

the center of the middle cable. Although the maximum temper-
ature reached in the cables and in areas next to them is at the
depth of the center of the cables (0.7 m), in areas of the soil that
are further away, this maximum descends toward the interior of
the soil in such a way that at a distance of 88 cm from the center
the maximum is located at a depth of 1.1 m.

For model accuracy, it is important to establish the distance at
which the isotherm is located from the cables, both sideways and
downwards. In our case, the use of a discretization of variable
step permitted us to study the position of this isotherm easily
without having to increase the computation time. Fig. 14 shows
the temperature that is obtained in the conductor of the central
cable as a function of the distance (to the center of this cable) at
which the isotherm is located, for three different values of cur-
rent. In this figure, the cables are considered to be buried directly
in the soil ( W/m C). The convection coefficient is

W/m C and the ambient temperature is 25C. The
isotherm below the cables was located sufficiently far away so
as not to affect the thermal distribution. As can be observed in
the figure, the higher the temperature, the greater the influence
of the isotherm’s location. Nevertheless, so that the situation of

Fig. 13. Vertical thermal profile in the soil.

Fig. 14. Temperature in the central conductor as a function of the location
distance of the ambient isotherm for different currents.

the isotherm does not influence the result, it is necessary to lo-
cate it at more than 3.5 m from both sides of the central cable.
The same conclusion is reached with respect to the location of
the isotherm in the area below the cables. In order not to af-
fect the temperature in the cables, it is necessary to locate the
isotherm more than 3.5 m below the cables.

In Fig. 15, the effect that the thermal conductivity has on the
location of the isotherm in the soil is shown. A current of 800
A has been assumed without change to the data from the pre-
vious figure. Clearly, the smaller the thermal conductivity of the
soil is, the greater the temperature that is obtained in the cables.
Therefore, the effect of the location of the isotherm is greater.
In any case and even in the best conditions, it is necessary to lo-
cate the isotherm at distances greater than 3.5 m from the cen-
tral cable in order not to affect the temperature calculation, and
therefore, the estimation of ampacity for the system.

For the transient model, we have also checked how it is af-
fected by the location of the isotherm in the soil. In this case,
the influence isotherm location on admissible maximum short
circuit duration has been studied (time needed to reach 250C
in the conductor). In Fig. 16, short circuit duration as a function
of isotherm distance to the central cable is shown, for three short
circuit currents. In this figure, the cables (500 mmin conductor
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Fig. 15. Temperature in the central conductor as a function of the location
distance of the ambient isotherm for different thermal conductivities in the soil.

Fig. 16. Short circuit duration as a function of ambient isotherm location
distance for different short circuit currents.

section) are considered to be buried directly in soil (
W/m C). Convection coefficient is W/m C and am-
bient temperature is 20C. As can be observed in the figure, the
location of the isotherm has less influence in this case than in
the steady state. Only for a short circuit current of 1.5 kA, did
isotherm location at a distance under 0.3 m noticeably modify
short circuit duration. The 2–kA current is only affected in the
case of an isotherm located at a distance of 0.2 m from the cen-
tral cable. The 5–kA current is not affected by isotherm location,
at least in the range of distances analyzed ( m). For cur-
rents below ampacity, isotherm location affects the time needed
to reach final temperature as in the steady state.

In Fig. 17, temperature as a function of time is shown, for
currents of 500, 700, and 810 A. Parameters are the same as for
the previous figure. As an initial condition, soil and air ambient
temperature at 20C is assumed (cables without initial load).
As can be observed, the temperature rose slowly with time until
reaching the steady–state temperature. Taking into account time
to reach steady state, variation in load and changes in ambient
temperature, the temperature in buried cable system is actually
a succession of a transient states.

Fig. 17. Conductor temperatures as a function of time for different currents
can be seen here.

Fig. 18. Conductor temperatures as a function of time for different initial
conditions compared with the adiabatic case.

It is usual, in the thermal study of conductors in short circuit
situations, to calculate the heat increase with the adiabatic equa-
tion. With the sole aim of studying whether such an approach is
conservative or not, we have carried out a series of calculations
for the temperature in cables using our model and the adiabatic
model. Fig. 18 shows some of the results gained for the three
low voltage cables with 500-mmconductor cross–section, in-
sulation thickness (XLPE) of 2.2 mm, and sheath (PVC) thick-
ness of 2 mm. The cables are in mutual contact and the burial
depth (in simple soil) is 700 mm. The thermal conductivity of
the soil is assumed at 0.833 W/mC and the convection coeffi-
cient at 9.3 W/m C. The figure shows the heat increase with
our model and that calculated with the adiabatic model for two
cases of different initial conditions. In the first case, it has been
assumed that the cables and the soil together start at 25C. In the
second, the initial temperature corresponds to the heat distribu-
tion that exists for the steady state at a conductor current of 400
A (in this situation, the highest temperature is obtained from the
central conductor cable where the value is 38.6C). The short
circuit current is 5000 A in both cases. The figure shows that the
values obtained with the adiabatic model are much greater than
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Fig. 19. Temperature difference between our model and the adiabatic method
as a function of time.

those obtained with our model in both of the cases studied. The
difference between the two models is increased as the short cir-
cuit duration time lengthens (and therefore, the temperature in-
creases), with thermal differences over 100C. The cases shown
here clearly indicate that the adiabatic model is too conservative
if the possibilities of the system are to be used to the maximum.

Fig. 19 shows the temperature differences obtained when
comparing the results of our model with the adiabatic model for
different three initial conditions at the start of the short circuit:
a case corresponding to cables without load and ambient
temperature of 25C; and two other cases where steady–state
temperature distributions for 400 and 600 A are assumed. The
data corresponding to the cables and soil are the same as for
Fig. 18. As expected, the difference is increased over time and
with higher initial temperature conditions. This said, however,
for the same temperature (which is reached in shorter times
the higher the initial temperature) but with different initial
conditions, the differences between the adiabatic model and
our model are greater for those cases which begin with lower
initial temperatures.

V. CONCLUSION

In this work, we have presented a model based on the fi-
nite difference technique in order to calculate the ampacity and
the heat distribution in a buried, three-cable system. The model
takes into account the various elements that make up the ca-
bles—conductor, insulation, shield, sheath, armor, etc.—along
with the different possible materials that surround the cables.
The fact that we have used a variable step discretization has al-
lowed us to drastically reduce the number of points under study,
and thus, simplify the problem that usually arises in this situ-
ation when a choice must be made between the best approx-
imation and the least calculation effort. The model developed
is applicable to steady and transient states, which means it can
be used instead of the overly conservative adiabatic model to
know the temperatures reached in the case of short circuits or
overloads. The model enables the introduction of different ini-
tial conditions for each discrete point as well as the selection of
adequate acceleration factors that can be used to reduce calcu-
lation time.
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