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Theoretical Model to Calculate Steady-State
and Transient Ampacity and Temperature
In Buried Cables

Carlos Garrido, Antonio F. Otero, and José Cidras

Abstract—The temperature distribution and ampacity in Analytical methods in conjunction with empirical approxi-
a multilayered soil surrounding a system of three cables are mations were initially used for the buried cable heat calcula-
calculated in the steady state and in emergency situations. In tions [1]-[4]. Later, some writers took on the problem using
this paper, we present the mathematical model, which solves . : .
the heat diffusion equation in cylindrical coordinates inside the a representatlpn _Of the cable system by _the thermal equivalent
cables and in Cartesian coordinates in the surrounding soil. The Of & lump or distributed parameter electrical network [5], FFT
finite difference method is used to solve the equations. In order to techniques [6], Newton-Raphson techniques [7], etc. However,
reduce the number of points studied that are of no interest to the ' these are not the most suitable methods for a thorough tempera-
results, a variable step discretization is used. Here, we present the ture study. The invariability of the parameters with temperature
development of the model and the effect of some of the parameters . . e '
which influence the convergence and accuracy of the method. The the excessive ,S'mp"f'cat'on of t_he geom?try of the problem,
application of the model in different configurations and situations and the materials and the starting conditions are some of the
is given in the second part of this work, sent for publication at the main minus points. Therefore, in order to predict the temper-
same time. The model is applicable to the study of buried cables ature distribution in buried cables as reliably as possible, one
in both the steady state and transient states for short-circuit and must resort to numerical calculation. Numerical methods can
overload situations. . . . . .
conveniently deal with the varying properties of the materials
Index Terms—Ampacity, thermal analysis, transient tempera- jnvolved, the complexity of the real system, and the variability
ture, FDM, temperature rise. of the parameters with temperature. Different models have been
presented that use finite difference methods [8]-[13], finite ele-
|. INTRODUCTION ments [14]-[19], or contour elements [21]. These methods rep-
%ﬁent the buried cable system by means of a discrete set of

S K ints and solve the heat diffusion equation using one of the
and distributed through buried cables, due to the ad\{antg crete techniques mentioned. However, the models referred
that these offe_r co_mpared to oyerhea(_j cablgs. Th? main d'sf% do not show broad development which allows rapid applica-
vantage of buried installations is knowing, with sufficient acc jon and, in many cases, are only applicable to the steady state
racy, the maximum values for ampacity that can flow throu% ' ' )

. . : : . imilarly, none of them contemplates the variability of the pa-
them in steady and transient states without insulation deter}%heters with temperature. In view of this, we have deemed it
ration. This lack of knowledge is due to the temperature ge y '

-Convenient to develop a model that can be applied to steady and

erated. by the electrical current passing through thg installatlﬁz nsient states and takes into account the dependence of the pa-
not being known accurately enough. The use of various mater] eters on temperature, always bearing in mind that the model

in the composition of the cables and the backfill in contact with, | 1o abie to respond to the basic questions arising from de-

them_ under certain conditions of use, can gverse to tempe@@ners and users of these installations, such as: what is the time
ture increases above levels that the cable insulation can W'H?I

tand without deterioration. A d Lation permitted for a specified overload given certain oper-
stand without deterioration. AS a consequence, under nor g conditions? What temperatures will there be after a spec-
use, these installations are used below their real load possi

. ) . ; . ' Ed overload given certain operating conditions? What is the
ties. However, given the high cost of such installations, it wou

b ful t K i fth that th : aximum ampacity for the cables for a given period of time
€ usetul to make optimum use ot thém so that th€ maximuly specified system temperatures? etc. The aim of this work

possible current can circulate without exceeding the tempejay, develop a more exact method for obtaining the steady and
ture limit for insulation deterioration. For this, it is necessary tﬂansient heat fields in buried cable insulations. one which al-
;now the tetrr?per]:a\tt# re dqflfstnbl:tlcl)n aromtmd bl;r'ed cames, thte {Bivs graphs or charts to be drawn up for different configurations
uence on this ot the ditrerent elements making up the systell}, y iy ations for easy application by electrical engineers. The
and the situations that can arise during use as accurately as posge| presented here is based on the finite difference method

o r
N densely populated areas, electricity is usually transport;

sible. (FDM). Due to the length of the insulations, the model is inde-
pendent of this variable, which means that only a two-dimen-

_ . sional (2-D) study of the problem is needed. One of the incon-
Manuscript received December 13, 2000. . __veniences that may arise is the need to consider a large area of
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Digital Object Identifier 10.1109/TPWRD.2002.801429 points in the soil see no temperature modification (constant tem-
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perature isotherms at points far enough from the cables). This
normally leads to a compromise between choosing a number of
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air
ground surface

study points which is not so great and choosing an isothermin a
position which does not correspond to it. To avoid this problem,
Hannaet al. [8] introduced a restriction based on the law of
energy conservation, by which they establish that heat losses
through the limit area must be equal to the heat dissipated from
the cables. This restriction permits a reduction in the size of the
area under study but introduces new disadvantages. In our case
we have considered that in order to better tackle the problem, it
is necessary to consider the whole areathat is affected by heat in-
creases. This means that to reduce the number of points, we have
introduced a variable step discretization; thus, we can focus our
attention (a greater number of study points) on the interior of the
cables and the areas near these, while the areas further away (;
lower temperature variation) is represented by a smaller number
of discrete points. At the same time, the model includes the vari-
ability with temperature of the parameter involved (resistivity of
the conductor and thermal conductivity and specific heat of th
different materials in the cables and the soil). It is possible to
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Fg. 1. Geometric model (cross—section) of a typical buried cable installation.

simulate the moisture migration using a variable soil thermil the surrounding material. Putting the divergence and gradient
conductivity as a function of the temperature. Also included agperators through (1), and taking into account the variation with
the heat losses to the environment through convection and gdgreperature of thermal conductivity, we obtain for cylindrical
through radiation. The model also considers dielectric loss€gordinates

which may be great for medium or high voltages. The model
is applied to temperature calculations in buried insulations apd'’p
makes it possible to simulate calculations for direct current and
alternating current by using different current values, etc.

Here, we present the model’s mathematical development and
the results concerning the model itself. In an accompanying
work, the results obtained using our model for different usaggd
conditions and different system configurations are shown.

pCp
Il. DESCRIPTION OF THEMODEL

One of the most used configurations for buried power cables
consists of three individual cables placed at the same level and
with a typical separation between them of one diameter (Fig. 1).
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for Cartesian coordinates
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These cables are usually buried directly in the earth orina ba&_quations (2) and (3) are subject to the following boundary con-
fill material such as concrete or sand. Alternatively, they agitions:

placed in pipes. In order to obtain the heat distribution arounda)
the buried cables, itis necessary to solve the heat diffusion equa-
tion

o)
pCpor = VIKVT] 4 Q )

wherep, Cp and K are, respectively, the density, the specific
heat, and the thermal conductivity of the material being studied.
Q represents the energy generation per time unit and volumey)
unit. BothCp and K usually vary with temperature. Likewise,
heat generation, varies from point to point and is a function

of the temperature. Given that the length of the installation is
much greater than the lateral dimensions, the above equation is
considered independent of the length coordinate, so the equation
is solved in a plane that is perpendicular to the length. Bearing
in mind the geometry that is shown in Fig. 1, and with the aim
of obtaining greater accuracy in the results, we use (1) in cylin-
drical coordinates inside the cables (made up of conductor, insu-
lator, jackets, shield, sheath, etc.) and in Cartesian coordinates

In the soil which is far enough away from the cables, both
to the sides and underneath, the temperature is not af-
fected by the cables’ presence, which means that in these
areas, a temperature isothe(ffi) is considered to be
equal to the ambient soil temperatyfer)

T = TT = (C'te. (4)

At the separation surface between soil and air, convection
losses are considered, which means that temperatures at
this surface are obtained by taking into account Newton’s
law

V(KT) = h(T ~Ta) 5)

whereK is the thermal conductivity of soil (or material in
the surface)h is the convective heat transfer coefficient
(W/m2.°C), T is the temperature at the surface, and

is the air temperature.
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¢) In the separation between the different materials ¢ %
the cable, between the surface of the cables and tl yl—w
surrounding medium, and between the different mate
rials surrounding the cables, calorific flow continuity is
fulfilled at the separation surface: i1
T oT Tl TR

— = Ko— | || | | i+AYAX2
K 21 ©6)

wherel is the normal to the separation surface, dnd
and K, represent the thermal conductivities of medium :
and medium 2, respectively. Likewise, the temperature i
both materials at the border points must be the same.
In (2) and (3),Q represents the heat generated per time ur
and volume unit. The production of heat in the cable is due 1
current circulating through the conductors, jackets, and shielc..
At the same time, it is also necessary to consider the heat pgQ- ,
duced by dielectric losses, which can be great in medium an
high voltages. To determine these losses, the formulae given in
[22] are used. At the surface of the soil, the generation or loss
of heat through radiation and the solar radiation must be consid-
ered. Heat generation from current circulation is given by i,j|+1
R,I?

= v () At
AV [ A 2

whereR,, is the resistance of the section being considefgds 0
the current passing through that section, arid is the volume. Lifi+1,j
Taking into account the relationship betwegp and the resis- —i,j-1
tivity of the conductor and the system of coordinates being used,
we obtain, for each conductor [
Iz i1
Q=g ®)

where )\ is the conductor’s electrical resistivity, is the total
current passing through it, arfdis its section. Electrical resis- ¢y 3 piscretization inside the cables.
tivity is assumed to be variable with temperature, and the effects

on this of skin and proximity effects [22] have been taken into le insul ith ith orating. it is cl
account. Both direct and alternating currents can be used in @€ insulators can withstand without deteriorating, it is clear

model, and different current values for each conductor can al§t @ greater number of discrete points are needed from inside
be used. and nearby the cable for greater accuracy when calculating this

Given that (2) and (3) are nonlinear, their resolution cann%ﬂ“t' As a consequence of this, and with the aim of improving
be undertaken using simple analytical techniques, which medhg _speed_wnhout losing accuracy, we hgye ap_proxmated the
we have approximated the partial derivatives using finite diffePartial derivatives through variable step finite differences [23]
ences (FDM) [23]. The method consists of making a partitidﬂcreas'ng the discretization _step as we move away from the
(Fig. 2) using a mesh of discrete poir(isj) where the tem- a'€as near the cables (see Fig. 2).

perature at each point is calculated to solve the equations thafPPying variable step discretization to (2) and (3), we get

result from the approximations for (2) and (3) by finite differcYlindrical coordinates (see Fig. 3)

ences, taking into account the applicable boundary conditiong rp = _ 7 7
. . . Tw i—1,g Tz+1,J T’L,J
for each case. In this method, the speed of solution increas

: . T Arq Arg
as the number of points studied decreases. However, the more T T . T
points considered, the greater the accuracy. Itis clear that at the 1 2K izLj L i+l }
points sited within the cables and theirimmediate surroundings, Ary(Ar+Ary)  AriAry - Ary(Ari+Ars)
there is a greater heat gradient, which means that in these areas, K | 7i,j—1; =275, +Ti,j+1
it is necessary to calculate the temperature at the highest pos- 2 AB?
sible number of points so as to obtain the most reliable results. Lok | (10 —10. \? 70 g0 \?2
Inversely, the areas further away from the cables have a smaller 4~ =~ <”—7—1J> 4 <M>
thermal gradient, which means the accuracy of the method is not Ary Ary
compromised if the number of points chosen there is smaller. On
the other hand, taking into account that the current limit (am- ia_K
pacity) is a consequence of the maximum temperature that the 72 0T

Discretization employed.

2
TPy — 17

i,j—1

2A0

. _ 70
1;; = 15,

+Q= /)CPT 9
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wherei and j represent, respectively, the discrete variables at
coordinates- andé.
Cartesian coordinates (see Fig. 2)

9K [ Ti—1; Ty n Tiv1,5
Afl)l(Al‘l + AJ?Q) Az1Azo A:L‘z(A:L‘l + ATLQ)
n ;-1 T, T 11 }
Ay1(Ayr + Ayz)  AyrAys  Ayz(Ayr + Ays)

2 2
VoK T =Ty (Toas = T
20T A.Z‘l A.Z‘Q

0 0 2 0 0\ 2
N Ti; — T N T —Ti; L0
Ay Ay
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Fig. 4. Connection points between both systems.

_ o, B =1 (10)
TN
wherei andj represent, respectively, the discrete variables at co-
ordinatesr andy. T°° represents the temperature at the previous
instant in time and\¢ is the time increment being considered.
Due to the nonlinearity of the equations, the nonlinear terms are
evaluated with the temperature values obtained in the previous
time iteration.
Grouping terms in (9) and (10), the equation system
A(L/J)T’z] + A(L + 17j)Tli+1J + A(L - 1717.)111‘71,]' + A(L/J +

2
pC, T}, 10K <Tz’?j_ﬂo—1,j>

At 20T Axy

2 2
T~ TP, T -T)
+ Axo + Ayl

0 0\ 2
n 11 — 1o
Ay

F(i,j) =Q+

12)

DTijer + AGj — DTij10 = F(i,7), is obtained, whose  ghayid only the equation system for the steady state be
independent coefficients and term are given by the fOIIOW'”ﬂeeded, the terms containinyt in the A(i, ;) and F(i, 5)
For polar coordinates coefficients can be eliminated from the previous equations.

In the previous equation system, the coefficients are a func-
tion of temperature, which depends on position and time. So in
order to solve the equation system, we have used the over-re-
laxed iterative method (modified Gauss-Seidel) solved in an it-
erative way for each discrete time stéy, thus obtaining the
heat distribution over time. The connection between the equa-
tion system in cylindrical coordinates and the equation system

J_fCo K1 1, 2K 2K
T At 2r \Ary  Arg AriAry  r2AH2

A(i+1,5) = —K(

Ali,j

2 1
Arg(Ari+Ars) + 2rAry >

2 1
A(i—1,j) =-K -
(i=1.7) (Arl(Arl +Ary)  2rAr >

Alij+1) = — K . A(i,j—1)=— K in Cartesian coordinates is obtained through the four discrete
r2Af? r2Af? points in common between the outer surface of the cable and the

o pcpng 19K Tiqj_TiO—l_j 2 surrounding soil (discrete pointsb, ¢, andd in Fig. 4). How-
F(i,j) =Q+ AL ’ 59T T ever, for the temperature calculation in the surface separation
/ ! between cable and soil at the points that are not in common be-

T0 0. 2 1 0K tween both coqrdinate systgms (poigﬁisfg,.fi),? fain I_:ig. 4),
+ <M) — A a temperature is used that is obtained by interpolation between

Ars re oT the nearest points in the soil in the radial direction (poinasd

T0 70 2 h in the soil for pointf;). The interpolation chosen is due to its

N Y Y (11) being more versatile when varying the values\of and/orAy

2A6 and this variation does not affect the results obtained with the

model.

and for Cartesian coordinates . ) . . i
The discrete points where the boundary conditions given in

A j) = PGy + 2K < ! + L ) , (5) and (6) are fulfilled modify the equation system coefficients
At AziAzy — AyiAy, in accordance with what follows.
A(i+1,5) = — 2K a) border points between different media
Azy(Azy + Az) a.l) Separation surfaces between the different layers that
A(i—1,7) = — 2K make up the cable (conductor, insulation, shield,
Az (Azy + Azs) armor, jacket, sheath, etc.) and the soil or surrounding
Al j+1) = — 2K _ material. Bearing in mind that the following is fulfilled
' Aya(Ayr + Aya)’ at the boundary pointsk; (07 /0r) = K»(9T/dr),
Ay —1) = 2K with doing a Taylor development around point

T Ay (Ayr + Ay) sited on the boundary between both media:; ; =
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T;; + Ar(oT/0r) + (Ar?)2)(0*T)or?), Ti—1; =

T; ;— Ar(0T /0r)+ (Ar?/2)(0*T /0r?) and clearing
the second derivatives and substituting in the polar
equation for both media (1 and 2) the following is
obtained for the coefficients:

P1Cp1  p2Cp | 2K, 2K,

F(i,j) =12,

>

Az1p1Cp1  AzapaCho
J 2At 2At

2
+AIE1 0K, =Ty ;
2 oT A,ﬁl?l

2
e _ 2. —TP . Azy OK.
(,5) = 1At coAt clAr% czAT% 4| LBl ! +— T2 92
_ i Q)= 22
12 A2 cer2Af?’ +J caAT3 70 _qo \% /g0 _qo0 \?
i Sy G i
A1) = 2B gy =B Ko 8 ( Az ) +( Ay )
)= c1Ar?’ »J T er2AR2 T cor2AR2 2 Y2
. K, K, (14)
A(i,j—1) =
(i ) c1m2A02  cor2 Af2?
F(i,j) = Q1 @—I—T-O- p1Cp1  p2Cp2 and similarly for the case where the separation surface
J c1 Co Y\ el At At is perpendicular to variable.
0 2 a.3) Corner points between two materials in Cartesian
4L aaKl ( ”AT‘_”> —i% coordinates
¢ OT 1 c2 OT In the same way as the previous cases, the boundary
70 _70 1 9K points fulfil K,(0T/0x) = K»(0T/dz) and
><< MA] ”) +— 8T1 K. (dT/dy) = K, (dT/dy) where z and y,
2 ar respectively, are the normal to the separation
T, ~TO. | 2 surface. With a Taylor development around
L’ﬁ2A9”_ point i sited on the boundary between both
media for the case in which the separation sur-
2 . . .
1 0K, ”H Tqu face is perpendicular t20 var|2able TL+1] =
~ 35T N where T;j + Az (0T /0x) + (Ax?/2)(0*T)0x?), Ti—1 ; =
? T;; — Ax(9T/dx) + (Az?/2)(0%T/dx?), clearing
:1 2 _l_i the second derivatives and substituting in the Cartesian
c1 + and Co (13) i . . ”
r o Ar T Ary’ equation for both media (1 and 2), the following is
a.2) Separation surfaces between the different mate- obtained for the coefficients (Fig. 5):
rials surrounding the cables (backfill material,
top layer, and soil). As in the previous case, the A, ) _ p1Cp1 (A1 Ay +Axo Ay +Axy Ays)
boundary points fulfill K1 (0T /0x) = K»(9T/0x) )= 2At
or K1(0T/0y) = K»(0T/dy) wherex or y, re- szAy2p20p2+K Ay1+A961 Ay,
spectively, are the normal to the separation surface, 2At AL Ay Axg
with a Taylor development argund poinsited on the N Azs  Ays Az N Ay2 A:v2
boundary betwgen .both med|§1 for the case where the Ayr Ay Ay Azy | Ay
surface separation is perpendicular to variable Ay, Ays
2 02 A(Z'"i'lvj)_Kl—_KZ—
e T+ A 8T+Ax o°T Azxs Azo
i = 1y r— h— .
T Oz © 2 022 Al =1,5) = K, |20 4 292
oT  Ax?0°T " Az Az
Tio1;=Ti; —Az——+ ——
Ox 2 022 AGirj+1) K Azy . Az
) = N1 2 v
and clearing the second derivatives and substituting in Ay Ay
the Cartesian equation for both media (1 and 2) thf? ) =-K Axy n AV
following is obtained for the coefficients: N Ay T Ay

A(z’ .)_A171010p1 A$2p20p2 Az K,
LY.V oAt AyiAys
A.CEQKQ Kl K2
AylAyg A,ﬁl?l A:EQ
. . K ) . K
A( +1) A$1K1—|—AZE2K2
1, ] =
" Ay (Ayr+Ays)
Az Ki+Azs K.
Ali,j—1) = T1 K1 +AT2/K9

Aya(Ayr +Ay)

F(i,j) =T}, (

p1Cp1 (Az1Ayr + Az Ayr + Az Ays)
2A¢t
+ Psz2A$2Ay2> + Ar1Ay; 0K

2At 2 oT

2 2
TO - 111 1,5 TO - TL J—1
X N et TV A + P L
AV 1 Ay
Ay 0Ky [ (T, =10\
i T2AY1 1 i+1,5 4J
2 oT A:L’z
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Fig. 5. Corner points between two materials and points between three

materials.

2
N e L L AniAy; 0K,
A’ljl 2 oT

2
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AV Ay
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0 0\ 2 0 0 2
Ti+1,j - T“ + Tz’,j — Ti,jfl
ALEQ Ayl

2
4 Az Ay, 0K, ;=12 ;
2 oT AZEl

2
n i1 — 17, L Az Ays OK3
Ay 2 oT

0 0\ 2 0 0\ 2
o (T — T N T —Ti;
Ay Ays

(16)

b) Separation surface between the ground surface and the
air. With a Taylor development on the border pdiitj),
the separation surface being perpendicular to the coor-
dinatey, if the second order derivative as a function of
the first order derivative is obtained and taking into ac-
count the convection equatii(KT) = h(T —T4) =>
Kr(0T/0y) = h(T — T4), the following is obtained for

2
TO. .~ —T0.
+ 1,7+1 1, (15) i . /
Ays the different coefficients:
.o pTCpT 2KT QKT 2h
gnd similar_ly for the case where the separation surface A(i, j) = At AziAzy | Ay Ays
is perpendicular to variable. 2Ky
a.4) Points between three materials in Cartesian coordi- A(i+1,5) =
. A$2(A$1+A$2)
nates. In the same way as the previous cases, the border
: > A , , 2K . 2Kr
) - 1—1,7) = 2, =
points, calorific flow continuity is fulfilled at the sepa-  A(i—1, j) Ao (Ao A A(i,j+1) A2
ration surfaces. In a similar way, we obtain (Fig. 5) 1 (A1 +Ax2) Y2
.o 2h .o pTC T
o p1Cpi (A Ay + Az Ays)  AzaAy1paCpo A(i j—1) =——, F('L»J):Ti?j (_;;)
A(IL7 7) = Ayg At
: 2At 2At 0 o\ 2
Az Aysp3C,3 LK Ay i Az Ay Ay OKp T ip — 1o
2At Az T Ay Ax 2 0T Ays
A A A
+i + K, i_Fﬂ 70 0 2
Ays AV Ay + i+1,j5 4,J (17)
|:Ay2 A.CCQ:| AmQ
+ K3 ~
AJ}Q A’yg i i
Ay Ays wherepr, Cpr, andKr are, respectively, the density, the
A(i+1,5) = —Kzg _K?’E specific heat, and the thermal conductivity of soil.
2 2
A A
Ali—1,j) =K, | T2+ 22
A.Tl Al’l
Az At Ill. M ODEL VALIDATION
A, j+1) =—K> Ay — K Ay In order to contrast the model, a known heat distribution, one
Az N corresponding to a determined heat generaijois introduced
A, j—1) =—K; —Ayl - 2_Ay1 into it and the model’s results are compared with those for the
p1Cp1 (Az1 Ayt + Az Ags) known distribution. In no case was the temperature calculation
F(i,g) :Tfj ( L 2At - error greater than 0.2%. Likewise, for the transient model, if
; losses through the cable insulation are not taken into account,
+ p2Cp2 A28y /’3C1’3A$2Ay2> all of the heat generated goes into increasing the conductors’
2At 24t temperature, this increase can also be obtained through the adi-
2 0 H .
\ Aay Ay, 0K, <TL°] _ TP_1,j> abatic thermal equation [24]:
2 oT A 124
n AT = (T; + ) [e( west) 1} (18)

2
. T, - T, n Axy Ay 0K

whereT; is the initial temperature] the current,M is a pa-
rameter that for copper is 226 A/8/mm?, S is the conductor
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acceleration factor Fig. 7. Number of iterations as a function of initial temperature for the three
currents.

Fig. 6. Acceleration factor effect on the number of iterations.
the cables. This is clear, because at greater currents, the tempera-

_ _ . . - ture is higher also, which means that the starting temperature for
sec_t|on, and’ is the inverse of the variation coefficient of thereaching convergence in fewer iterations must also increase. For
resistance. o each current (thatis, for each heat distribution), the number of it-

In order to check s fitness, the temperatures were calculaigding decreases with the increase in initial temperature until a
assuming cable insulation with zero thermal conductivity S0 gimm is reached, from which point the number of iterations
to be able t(_) compare it with (18)_' The StUdY was C"f‘me_d_(_)HEeded to reach convergence increases again. Clearly, this result
for cables with several cross—sections and with differing initigl 1, 4 with the final temperature attained, as a uniform initial

por)dltlons fo.r each case. The \_/alues.obtamed. by our modgl ?gﬁwperature at all of the discrete points which represents the av-
incide fully with the values obtained with the adiabatic equatlograge value of the final temperature will give rise to the lowest

number of iterations. However, in our model, in order to reduce
the number of iterations as much as possible, the heat distribu-
tion corresponding to a current, near that for which temperature
Given that the Gauss-Seidel method is used to resolve thdeing calculated, can be introduced as an initial temperature
nonlinear equation system, it is interesting to estimate the duyitial condition). It should also be pointed out that the coeffi-
celeration factow in order to reduce as much as possible theients and terms that are independent of the equation system are
number of iterations needed to reach convergence. Fig. 6 shanadified in each iteration because they are themselves a func-
the number of iterations needed (as a percentage) to reach ¢wm of the temperature. This can give rise to an increase in the
vergence according to the acceleration factor. The numbermfmber of iterations needed to reach convergence. In the case
iterations needed with = 1 represents 100%. It can be seenf steady—state calculations, the effect was studied of the in-
that the number of iterations needed is significantly reduced dppendent coefficients and terms on the number of calculation
to a value of 16% for = 1.78. For values ol over 1.78, the iterations. In one case, they were calculated in each iteration,
system becomes unstable. However, the total number of itevdiile in another they were calculated for the initial tempera-
tions is still quite high, although this number depends on tliere values, the system was resolved, they were recalculated at
starting point (initial conditions) chosen for solving the systenthe new temperatures, the system was again resolved, and they
In the steady state, unlike the model presented by Hahah were recalculated again at the new temperatures, etc. until con-
[8], the choice of initial temperature is not a critical parametefergence was reached. After developing several examples for
in the number of iterations to be carried out, as the model supe different cases, we can conclude that the fastest resolution
ports the introduction of a known heat distribution as an initiahethod is the one where the independent terms and coefficients
starting point. The more this distribution approaches that care calculated in each iteration.
responding to the current being used, the lower the number ofOnce the convergence criterion has been chosen (tempera-
iterations needed to reach convergence is. However, we hawe differenceAT between two successive iterations), it is es-
also tested our model (in the steady state) assuming the sgreeially important to reduce the number of iterations and reach
initial temperature at all of the discrete points. Clearly this siedequate accuracy. Thus, Fig. 8 shows the relationship between
uation is far removed from the final one, which means that thiee convergence criteriad7” and the absolute error in the final
number of iterations needed to reach convergence is great. Témperature for a system made up of three low—voltage con-
number of iterations needed to reach convergence as a functimictors buried directly into the ground at a depth of 1000 mm
of the initial temperature specified when beginning the calculand where the heat distribution corresponding to the steady state
tion can be seenin Fig. 7. It can be observed that the initial temas studied for currents of 500, 800, and 1000 A. Thus, for
perature that needs to be specified in order to obtain the leAsF = 10-%° C, the least possible error was achieved. How-
number of iterations increases with the current passing througyer, the method continues for an infinite number of iterations

IV. RESULTS



674 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 18, NO. 3, JULY 2003

Convergence criterium (°C)

0,01 0,001 0,0001

=

—@—500 A
——800 A

A—1000 A Fig. 10. Temperature distribution in the three cables.

previous case. From the figure, one can deduce that the greater

the current (and, therefore, the temperature in the cables) and

the smallerAT, the higher the number of iterations needed to

reach convergence. On the other hand, according to the previous

Fig. 8, there is a practically negligible reduction in the number

of iterations for values oAT" with which small errors in tem-

perature calculation are obtained (curve section betviéen

Fig. 8. Difference (in percent) between the final temperature and the reaa[?d4 x 1074 C)_' . L.

temperature according to theT’ convergence criterion. The use of variable Step discretization allows us to Study the
temperature inside cables and their immediate surroundings in
full detail. For this, discretization intervals of less than 1 mm are

8000 - used in the cables and the area next to them, whereas the dis-

Thermal difference (%)

2000 ::zg: cretization interval in distant areas is, in some cases, more than
T 1 m. It must be remembered that the greatest heat gradient takes
6000 1 —A—1000A place in the cables which means that calculating their tempera-
ture accurately needs a model that uses very small increments.
o 5000 L In the areas further away, as the thermal gradient is very small,
5 the use of large increments does not affect the thermal calcula-
"E 4000 + tion. Partition of the soil is formed by a mesh of 821 discrete
2 3000l points while inside each cable the partition contains a total of 33
discrete points.
2000 | In Fig. 10, the temperature in three cables (5002nuon-
ductor section) buried directly in soil is shown when a current of
1000 + 810 A circulates through them. The thermal conductivity of the
0 . , soilis 0.915 W/n¥ C, the convection coefficientis 7.38 W

0,00001 0,0001 0,001 0,01 C and_the amb|ent temperature i$ ZD(in air and soil). It can be
seen in the figure that the conductor of the central cable presents
Convergence criterium (°C) a temperature’5C above that of the other two. In the insulator,

the temperature is the same as that of the respective conductor,
Fig. 9. Numbgr qf iterations needed to reach convergence according to {{Rjle the temperature in the sheath changes with position and
convergence criterion. . .

distance. Thus, in the two outer cables, the temperature at the

sheath surface varies from 85.8 at the point nearest the cen-
due to the calculation itself always being greater than the camal cable to 73.7 C at a point on the outer cable sheath nearly
vergence criterion, with the temperature varying (after a suffopposite the hottest point. The heat increase from the center of
cient number of iterations) between two values that only difféhe cable to the surface of the sheath is approximatelyCLO
in the fifth decimal place. This value was taken as the true final In Figs. 11 and 12, the temperature as a function of the dis-
temperature value. The error in the temperature estimation tlce to the center of the middle cable for different depths is
pends on the current passing through the cables and is greatewn. The parameters used are the same as those for the pre-
when the current is lower. For values AfT' < 107°° C, the vious figure. Thus, Fig. 11 shows the temperature in the cen-
system converges, and different final temperatures are obtaited cable and in the adjacent one in detail and how this reduces
according to the\ 7" value used. Thus, fah7 = 107°° C, the quickly once the soil is reached. As we approach the ground sur-
same final temperature is obtained as for the ideal case, wheréase, the profiles are less marked, with the temperature at this
at the other extreme, fahT = 10~2° C, temperature estima- surface (in the area located above the three cables) beinG 4.6
tion errors of more than 50% are obtained. As can be deduadubve the environment temperature. Fig. 13 shows temperature
from the figure, in order to obtain calculation errors of less thaas a function of depth (from the ground surface to the distance
1%, it is necessary to use valuesAf below4 x 107%° C. at which the soil isotherm is found below the cables). The pa-
Fig. 9 shows the number of iterations needed to reach convexmeters used are the same as those for the previous figures. The
gence for the three currents of 500, 800, and 1000 A from tpeofiles shown correspond to different locations measured from
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distance from center (cm) Fig. 13. Vertical thermal profile in the soil.
Fig. 11. Horizontal thermal profiles in the soil. 100
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Fig. 14. Temperature in the central conductor as a function of the location
distance from center (m) distance of the ambient isotherm for different currents.

Fig. 12. Horizontal thermal profiles in the soil. the isotherm does not influence the result, it is necessary to lo-

cate it at more than 3.5 m from both sides of the central cable.

the center of the middle cable. Although the maximum tempéeFhe same conclusion is reached with respect to the location of
ature reached in the cables and in areas next to them is attthee isotherm in the area below the cables. In order not to af-
depth of the center of the cables (0.7 m), in areas of the soil tiiatt the temperature in the cables, it is necessary to locate the
are further away, this maximum descends toward the interiorisbtherm more than 3.5 m below the cables.
the soil in such a way that at a distance of 88 cm from the centern Fig. 15, the effect that the thermal conductivity has on the
the maximum is located at a depth of 1.1 m. location of the isotherm in the soil is shown. A current of 800

For model accuracy, it is important to establish the distancefthas been assumed without change to the data from the pre-
which the isotherm is located from the cables, both sideways aridus figure. Clearly, the smaller the thermal conductivity of the
downwards. In our case, the use of a discretization of variatseil is, the greater the temperature that is obtained in the cables.
step permitted us to study the position of this isotherm easifherefore, the effect of the location of the isotherm is greater.
without having to increase the computation time. Fig. 14 showsany case and even in the best conditions, it is necessary to lo-
the temperature that is obtained in the conductor of the centcate the isotherm at distances greater than 3.5 m from the cen-
cable as a function of the distance (to the center of this cable}@ cable in order not to affect the temperature calculation, and
which the isotherm is located, for three different values of cutherefore, the estimation of ampacity for the system.
rent. Inthis figure, the cables are considered to be buried directlyor the transient model, we have also checked how it is af-
in the soil (K = 0.833 W/m-°C). The convection coefficient is fected by the location of the isotherm in the soil. In this case,
h = 7.38 W/m?°C and the ambient temperature i25 The the influence isotherm location on admissible maximum short
isotherm below the cables was located sufficiently far away sircuit duration has been studied (time needed to reach@50
as not to affect the thermal distribution. As can be observedimthe conductor). In Fig. 16, short circuit duration as a function
the figure, the higher the temperature, the greater the influeraféesotherm distance to the central cable is shown, for three short
of the isotherm’s location. Nevertheless, so that the situation@fcuit currents. In this figure, the cables (500 fimconductor
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Fig. 15. Temperature in the central conductor as a function of the locatigiy. 17. Conductor temperatures as a function of time for different currents
distance of the ambient isotherm for different thermal conductivities in the saffan be seen here.
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Fig. 16. Short circuit duration as a function of ambient isotherm locatiofig. 18. Conductor temperatures as a function of time for different initial
distance for different short circuit currents. conditions compared with the adiabatic case.

section) are considered to be buried directly in séil & 1 Itis usual, in the thermal study of conductors in short circuit
W/m-°C). Convection coefficient it = 9.3 W/m?.°C and am-  situations, to calculate the heat increase with the adiabatic equa-
bient temperature is 2C€. As can be observed in the figure, theion. With the sole aim of studying whether such an approach is
location of the isotherm has less influence in this case thandonservative or not, we have carried out a series of calculations
the steady state. Only for a short circuit current of 1.5 kA, difbr the temperature in cables using our model and the adiabatic
isotherm location at a distance under 0.3 m noticeably modifiyodel. Fig. 18 shows some of the results gained for the three
short circuit duration. The 2—kA current is only affected in theow voltage cables with 500-mirconductor cross—section, in-
case of an isotherm located at a distance of 0.2 m from the centation thickness (XLPE) of 2.2 mm, and sheath (PVC) thick-
tral cable. The 5—kA current is not affected by isotherm locationess of 2 mm. The cables are in mutual contact and the burial
at least in the range of distances analyze@.07 m). For cur- depth (in simple soil) is 700 mm. The thermal conductivity of
rents below ampacity, isotherm location affects the time needé@ soil is assumed at 0.833 WA and the convection coeffi-
to reach final temperature as in the steady state. cient at 9.3 W/rd° C. The figure shows the heat increase with
In Fig. 17, temperature as a function of time is shown, faur model and that calculated with the adiabatic model for two
currents of 500, 700, and 810 A. Parameters are the same asises of different initial conditions. In the first case, it has been
the previous figure. As an initial condition, soil and air ambierdssumed that the cables and the soil together start & .46 the
temperature at 20C is assumed (cables without initial load)second, the initial temperature corresponds to the heat distribu-
As can be observed, the temperature rose slowly with time untdn that exists for the steady state at a conductor current of 400
reaching the steady—state temperature. Taking into account tifn@n this situation, the highest temperature is obtained from the
to reach steady state, variation in load and changes in ambieantral conductor cable where the value is 38%. The short
temperature, the temperature in buried cable system is actuallguit current is 5000 A in both cases. The figure shows that the
a succession of a transient states. values obtained with the adiabatic model are much greater than
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Fig. 19. Temperature difference between our model and the adiabatic method
as a function of time.

(8]
those obtained with our model in both of the cases studied. The
difference between the two models is increased as the short cir€]
cuit duration time lengthens (and therefore, the temperature in-
creases), with thermal differences over 10 The cases shown [10]
here clearly indicate that the adiabatic model is too conservative
if the possibilities of the system are to be used to the maximu 11]

Fig. 19 shows the temperature differences obtained when
comparing the results of our model with the adiabatic model for
different three initial conditions at the start of the short circuit:*?!
a case corresponding to cables without load and ambient
temperature of 25C; and two other cases where steady—statél3]
temperature distributions for 400 and 600 A are assumed. The
data corresponding to the cables and soil are the same as fo¥
Fig. 18. As expected, the difference is increased over time and
with higher initial temperature conditions. This said, however, 15
for the same temperature (which is reached in shorter times
the higher the initial temperature) but with different initial
conditions, the differences between the adiabatic model and®!
our model are greater for those cases which begin with lower
initial temperatures. [17]

V. CONCLUSION [18]

In this work, we have presented a model based on the fi-
nite difference technique in order to calculate the ampacity ant®l
the heat distribution in a buried, three-cable system. The mod
takes into account the various elements that make up the ca-
bles—conductor, insulation, shield, sheath, armor, etc.—alon
with the different possible materials that surround the cableé%
The fact that we have used a variable step discretization has abo]
lowed us to drastically reduce the number of points under study23l
and thus, simplify the problem that usually arises in this situ—[24
ation when a choice must be made between the best approx-
imation and the least calculation effort. The model developed
is applicable to steady and transient states, which means it can
be used instead of the overly conservative adiabatic model to
know the temperatures reached in the case of short circuits or
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